Generating Recommendations for Stock Market Using Collaborative Filtering

نویسندگان

  • F. R. Sayyed
  • R. V. Argiddi
  • S. S. Apte
چکیده

Recommendation systems apply different data mining techniques on data and try to find the similarity among a huge collection of data items. These systems work on the technique of collaborative filtering, which makes use of the past users’ data and gives recommendations to new users. Collaborative filtering technique can be applied to various application areas where there is similarity between the past users’ behaviour pattern and the current new users. The recommendation system for stock markets described in this paper works using the technique of collaborative filtering and makes use of Apache Mahout to generate recommendations for new users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

A Stock Market Filtering Model Based on Minimum Spanning Tree in Financial Networks

There have been several efforts in the literature to extract as much information as possible from the financial networks. Most of the research has been concerned about the hierarchical structures, clustering, topology and also the behavior of the market network; but not a notable work on the network filtration exists. This paper proposes a stock market filtering model using the correlation - ba...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A Collaborative Filtering Recommendation Algorithm Based On User Clustering And Item Clustering

Recommendations that are personalized help the users in getting the list of items that are of their interest in e-commerce sites. Majority of recommender systems use Collaborative Filtering techniques to generate recommendations to their users. This project implements an information filtering technique called as Collaborative Filtering for generating personalized recommendations in movies for u...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013